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Using resistive compressible magnetohydrodynamics, we investigate the energy release and

transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the

magnitude of energy released and transferred to plasma heating in configurations that range from

highly compressible to incompressible, based on the magnitude of the background b (ratio of

plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As

expected, the system becomes more incompressible, and the role of compressional heating

diminishes, with increasing b or increasing guide field. Nevertheless, compressional heating may

dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting

magnetic field component) and b of 5–10. This result stems from the strong localization of the

dissipation near the reconnection site, which is modeled based on particle simulation results.

Imposing uniform resistivity, corresponding to a Lundquist number of 103 to 104, leads to

significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux

transfer and the amount of energy released, from �10% of the energy associated with the

reconnecting field component, for zero guide field and low b, to �0:2%� 0:4% for large values of

the guide field By0 > 5 or large b. The results demonstrate the importance of taking into account

plasma compressibility and localization of dissipation in investigations of heating by turbulent

reconnection, possibly relevant for solar wind or coronal heating. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4742314]

I. INTRODUCTION

Magnetic reconnection is with little doubt the major

mechanism enabling energy release in solar flares and mag-

netospheric substorms. The standard models of these events

involve large volumes but single reconnection sites, where

the ideal magnetohydrodynamic (MHD) assumption of

frozen-in fields breaks down, typically in the vicinity of a

magnetic neutral line (x-line) or separator. In addition to

these explosive single site events, reconnection at multiple

sites, presumably associated with turbulence, may also be of

relevance as a mechanism to heat the solar corona1 or the so-

lar wind,2 although direct observational support is hard to

obtain.

Theoretically, one might distinguish between reconnec-

tion in large or open systems, which do not significantly

inhibit the outflow from the reconnection site (such as

reconnection at the magnetopause or large-scale solar wind

events) and reconnection in confined or quasi-periodic sys-

tems, where the limited size provides a constraint on the

outflow and thereby on the energy conversion. Interest-

ingly, the standard flare and substorm models are of a

mixed type. On one side, toward the Sun or the Earth, the

outflow is constrained, with wave propagation and reflec-

tion times comparable to the impulsive evolution time. On

the other side, away from the Sun or the Earth, the outflow

may be considered as uninhibited with no feedback from

outgoing waves.

Turbulent reconnection scenarios can be considered as

examples of the second kind, for which the limited size of

reconnection sites may be relevant for energy release and

conversion. Reconnection in MHD turbulence has been

examined using incompressible-MHD simulations with non-

uniform resistivity,3 incompressible-MHD simulations with

uniform resistivity,4,5 compressible-MHD simulations with

uniform resistivity,6,7 and by compressible-Hall-MHD simu-

lations with uniform resistivity.8 The inadequacy of using

uniform resistivity has been noted by Lehe et al.7

In the present paper, we focus on isolated or periodic sys-

tems. Earlier investigations9–11 have demonstrated that plane

current sheets of limited size relax, via reconnection, into

new equilibria with lower magnetic, but increased thermal

energy (with small amounts of excess kinetic energy if the

total energy is conserved). The final states were surprisingly

similar for MHD, Hall MHD, hybrid, and full particle-in-cell

(PIC) simulations. This fact supports a view that differences

in the dissipation mechanisms do not strongly affect the final

states and the amount of energy released, mainly because the

dissipation is strongly localized. Equilibrium approaches11

further confirmed that the final states are governed by the

approximate conservation of mass,

M ¼
ð

qds=B; (1)

and of an entropy-related integral

S ¼
ð

p1=cds=B; (2)a)Now at Space Science Institute, Boulder, Colorado 80301, USA. Electronic

mail: jbirn@spacescience.org.

1070-664X/2012/19(8)/082109/9/$30.00 VC 2012 American Institute of Physics19, 082109-1

PHYSICS OF PLASMAS 19, 082109 (2012)

Downloaded 13 Nov 2012 to 128.183.169.235. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4742314
http://dx.doi.org/10.1063/1.4742314


integrated along magnetic flux tubes between boundary inter-

sections. In the simulations, this result stems from the absence

of significant (integrated) dissipation, magnetic slippage, and

heat flux across the magnetic field. In the MHD simulations,

these features are imposed, provided that resistive dissipation,

necessary to enable reconnection, is strongly localized.

The comparison of the simulation results demonstrated that

these properties were also very well satisfied in the particle

simulations,10 despite the operation of reconnection.

The two-dimensional configurations investigated by

Zaharia and Birn11 did not contain a guide field but consid-

ered different ranges of compressibility by varying the poly-

tropic index c. They found that increasing c towards

incompressibility significantly reduced the amount of mag-

netic energy released and converted to internal, that is, ther-

mal energy. Birn and Hesse12 extended the investigation to

two-dimensional configurations (@=@y � 0) that included a

guide field By, assumed to be either uniform initially or satis-

fying the force-free condition J� B ¼ 0. They showed that

the final energy state, in both, MHD and PIC simulations is

governed by another approximately conserved quantity for

each flux tube

Y ¼
ð

Byds=B; (3)

which can be identified as the displacement of footpoints of

field lines between two boundary intersections but is also

related to helicity.13 The conservation of Y for each field line

(as well as the conservation of M and S) provides a much

more stringent condition on energy release than the conser-

vation of total helicity within a volume considered.14

In this paper, we further investigate the role of compres-

sibility and of a guide field in energy release and transfer by

magnetic reconnection. In Sec. II, we present the basic setup

and approach. This is followed by fundamental equations

governing energy budgets in Sec. III. In Secs. IV and V, we

then investigate the influence of resistivity models and com-

pressibility on energy conversion on the basis of resistive

MHD simulations. Sections VI and VII address the roles of

the integral constraints and the system size, respectively,

with a summary and discussion in Sec. VIII.

II. INITIAL STATES AND NUMERICAL APPROACH

In the following, we will use dimensionless quantities,

based on the magnetic field strength of the reconnecting mag-

netic field component outside the current sheet, Bx ¼ B0, the

initial density q0, which is assumed to be uniform, and the

half-thickness of the current sheet, L0, with other units given

by appropriate combinations of these, for instance, velocity

v0 ¼ B0=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
, time t0 ¼ L0=v0, pressure p0 ¼ B2

0=l0, and

electric field E0 ¼ v0B0.

The initial current sheet configuration consists of a one-

dimensional Harris-type magnetic field profile, given by

Bx ¼ tanh z;

Bz ¼ 0:
(4)

The initial state also includes a guide field By, given by

By ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

y0 þ pf=cosh2 z
q

: (5)

For pf ¼ 0, the guide field is constant, while pf ¼ 1 rep-

resents a force-free state, B2
x þ B2

y ¼ const. Here, we use

magnetotail coordinates with x along the field that reverses

sign across the current sheet, z perpendicular to the current

sheet, and y in the invariant direction.

The corresponding plasma pressure follows from pres-

sure balance; it is given by

p ¼ 1

2
ð1þ B2

y0 � B2
x � B2

y þ bÞ ¼ 1

2
½bþ ð1� pf Þ=cosh2 z�;

(6)

where an arbitrary background pressure pb ¼ ð1=2Þb is

included. We note that b is defined on the basis of the pres-

sure of the reconnecting magnetic field component outside

the current sheet, Bx ¼ B0, not the total magnetic pressure.

The plasma density is chosen uniform as

q ¼ 1: (7)

The reconnection problem outlined above was studied

by a MHD code,15 using nonuniform grids with up to 4002

grid cells and a localized resistivity model given by

g ¼ g0 þ g1=cosh2 r; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=dxÞ2 þ ðz=dzÞ2

q
; (8)

centered at x¼ 0, z¼ 0. This choice, together with the

imposed symmetry, determines the location of the magnetic

null (x-point) where Bx ¼ 0 and Bz ¼ 0. The grid size and

the number of grid points were varied to ensure that they did

not affect the results.

The scenario considered is similar to the “Newton

Challenge” problem,9 however, without external inflow or

driving. Symmetry boundary conditions were employed at

x ¼ Lx and at x¼ 0. For most of the runs, the box size was

chosen to be twice the size in z as in the Newton challenge

problem, given by

Lx ¼ 8; Lz ¼ 8: (9)

In most cases, the scales for the localized resistivity

were chosen as

dx ¼ 0:2; dz ¼ 0:2: (10)

The small size of the resistive spot relative to the box

size was chosen in response to comparisons with PIC simula-

tions, which indicated a strong localization of dissipation.10

III. ENERGY BUDGETS

An important element that is used in our analysis is the

energy budget, which may be split up into the following

three equations for magnetic, internal, and bulk kinetic

energy, respectively:16

@

@t

B2

2
¼ �$ � ðE� BÞ � j � E; (11)
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@u

@t
¼ �$ � ½ðuþ pÞv� þ v � $pþ g j2; (12)

@

@t

q
2

v2 ¼ �$ � q
2

v2v
� �

þ v � ðj� B� $pÞ; (13)

where u ¼ p=ðc� 1Þ is the internal (thermal) energy density,

and E ¼ �v� Bþ g j in resistive MHD, such that j � E
¼ �j � ðv� BÞ þ gj2, and c is the ratio of specific heats with

c ¼ 5=3 for an isotropic plasma pressure.

The terms to the right of the divergence terms in

Eqs. (11)–(13) describe the transfer of one form of energy to

another; the sum of these vanishes. There are three different

transfer terms. The first one is Joule dissipation, equivalent

to Ohmic heating gj2 in the resistive MHD model. The sec-

ond term, �j � ðv� BÞ ¼ v � ðj� BÞ, represents acceleration

(or deceleration) by Lorentz forces as a mechanism of trans-

fer between magnetic and bulk kinetic energy, while the

third term, v � $p, provides the transfer between bulk kinetic

energy and thermal energy, representing work done by pres-

sure forces. In approximate force balance, j� B � $ � P, the

combination of these two terms also provide a mechanism of

transfer between magnetic and thermal energy. This is in

fact how compressional heating may transfer magnetic to

thermal energy, also in collisionless plasmas. While this is in

principle a reversible process, it may contribute to irreversi-

ble heating when combined with the unidirectional transport

from inflow to outflow in magnetic reconnection events.

In the present paper, we are particularly interested in the

total amounts of energy released and transferred. These can

be written as

DWmag ¼
ðt

0

ð
B2

2
dFdt ¼ �DWL � DWohm; (14)

DWint ¼
ðt

0

ð
u dFdt ¼ DWcomp þ DWohm; (15)

DWkin ¼
ðt

0

ð
qv2

2
dFdt ¼ DWL � DWcomp; (16)

where

DWohm ¼
ðt

0

ð
gj2 dFdt; (17)

DWL ¼
ðt

0

ð
v � ðj� BÞ dFdt; (18)

DWcomp ¼
ðt

0

ð
v � $p dFdt ¼ �

ðt

0

ð
p$ � v dFdt: (19)

Here, the integrals
Ð

dF ¼
Ð

dx dz are taken over the entire

box, such that the integrals over the divergence terms vanish

for closed or periodic boundary conditions.

IV. CHARACTERISTIC EVOLUTION AND RESISTIVITY
DEPENDENCE

Figure 1 illustrates the evolution of magnetic, internal,

and kinetic energy for a run with By0 ¼ 1 and b ¼ 0:2, using

localized resistivity (8) with g0 ¼ 0 and g1 ¼ 0:02; dx ¼ 0:2;
dz ¼ 0:2. After t � 100, a near equilibrium is reached. It is

remarkable that only very little energy is converted to (bulk)

kinetic energy. This is consistent with earlier results from

reconnection in a finite box of relatively small size,10,12 but

in contrast to reconnection in open or steady state mod-

els,17,18 in which roughly one half of the magnetic energy

released goes into kinetic energy flux, while the other half

goes into enthalpy flux (consisting of convected thermal

energy plus the work done by pressure gradients).

Due to the smallness of the net energy going into kinetic

energy, the final states are very close to an equilibrium, with

only minor oscillations. These final states are illustrated in

Fig. 2, obtained at t¼ 200 for three runs with resistivity mod-

els given by Eq. (8) with (top) g0 ¼ 0; g1 ¼ 0:2, (center)

g0 ¼ 10�4; g1 ¼ 0:2, and (bottom) g0 ¼ 10�3; g1 ¼ 0:2, all

with dx ¼ 0:2; dz ¼ 0:2 and By0 ¼ 1; b ¼ 0:2. While the

results for g0 ¼ 10�4 are very similar to those for g0 ¼ 0, the

results for g0 ¼ 10�3 show clear effects of diffusion of By

and Jy.

This effect also shows in the energy changes, demon-

strated in Fig. 3 for the internal energy (green lines) and its

contributions from compression (blue) and Ohmic heating

(red). Fig. 3 shows results from four runs with resistivity mod-

els given by Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines),

g0 ¼ 0; g1 ¼ 0:2 (dashed lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-

dotted lines), and g0 ¼ 10�3; g1 ¼ 0:2 (dotted lines), all with

dx ¼ 0:2; dz ¼ 0:2 and By0 ¼ 1; b ¼ 0:2.

Fig. 3 shows several remarkable results. Comparing the

two cases with g0 ¼ 0 (solid lines and dashed lines), we find

that the magnitude of the peak resistivity g1 localized at the

reconnection site has very little influence on the relative

amounts of integrated Ohmic and compressional heating. In

either case, the compressional heating clearly dominates

Ohmic heating. However, the uniform background resistivity

FIG. 1. Evolution of energy changes (bottom) for a run with a localized re-

sistivity given by Eq. (8) with g1 ¼ 0:02; dx ¼ 0:2; dz ¼ 0:2, showing mag-

netic energy (solid line), internal (thermal) energy (dashed line), and bulk

kinetic energy (dotted line).
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g0 can significantly increase the amount of Ohmic heating;

even with a small amount of background resistivity

(g0 ¼ 10�3), the total amount of Ohmic heating swamps the

localized Ohmic heating from reconnection and the compres-

sional heating. Also the Ohmic heating continues after the

rise from the early fast reconnection. This heating is obvi-

ously due to the dissipation of the current that becomes con-

centrated in the rings within the magnetic islands formed by

reconnection (Fig. 2). Even for g0 ¼ 10�4 (dashed-dotted red

line), the total amount of Ohmic heating from this dissipation

exceeds that from reconnection (dashed red line) by a factor

of �3 at t¼ 200.

V. EFFECTS OF INCREASING INCOMPRESSIBILITY

Section IV showed results obtained for relatively small

b ¼ 0:2 and moderate guide field magnitude of By0 ¼ 1. The

investigation of Zaharia and Birn11 showed that compressi-

bility can have a significant effect on the total amount of

magnetic energy released: with increasing incompressibility,

modeled formally by increasing c, the amount of released

energy greatly diminishes. In this section, we investigate the

release and conversion of energy, including the relative con-

tributions from Ohmic and compressional heating, using a

more physical approach to incompressibility, either increas-

ing b or increasing the guide field By0. The former case can

be considered as equivalent to increasing c as it increases the

ratio between sound speed and Alfv�en speed.

Fig. 4 shows the energy changes, obtained at t¼ 200, as

functions of b for four runs with resistivity models given by

Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines), g0 ¼ 0; g1 ¼
0:2 (dashed lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-dotted

lines), and g0 ¼ 10�3; g1 ¼ 0:2 (dotted lines), all with dx ¼
0:2; dz ¼ 0:2 and By0 ¼ 1. Green lines show the changes of

internal energy, consisting of compressional (blue lines) and

Ohmic contributions (red).

Fig. 4 confirms the result of Zaharia and Birn11 that the

amount of energy converted to thermal energy, essentially

equivalent to the amount of magnetic energy released,

decreases significantly with increasing incompressibility,

that is, increasing b. Fig. 4 also shows that, for g0 ¼ 0, com-

pressional heating remains dominant up to b � 10. The

FIG. 2. Late stages of guide field By

(left) and current density Jy (right) for

three runs with resistivity models given

by Eq. (8), (top) with g0 ¼ 0; g1 ¼ 0:2,

(center) g0 ¼ 10�4; g1 ¼ 0:2, and (bot-

tom) g0 ¼ 10�3; g1 ¼ 0:2, all with dx ¼
0:2; dz ¼ 0:2 and By0 ¼ 1; b ¼ 0:2.
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threshold becomes reduced, however, when uniform resis-

tivity is added, to b � 3 for g0 ¼ 10�4, while for g ¼ 10�3

Ohmic heating dominates at all values of b investigated

here.

Similar results are obtained for increasing guide field

By0. Fig. 5 shows the energy changes, obtained at t¼ 200, as

function of By0 for four runs with resistivity models given by

Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines), g0 ¼ 0; g1 ¼ 0:2
(dashed lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-dotted lines),

and g0 ¼ 10�3; g1 ¼ 0:2 (dotted lines), all with dx ¼ 0:2;
dz ¼ 0:2 and b ¼ 0:2. As before, green lines show the

changes of internal energy, with compressional contributions

in blue and Ohmic contributions in red. Again, increasing

incompressibility, expected from increasing guide field,

FIG. 4. Energy changes as function of b for four runs with resistivity models

given by Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines), g0 ¼ 0; g1 ¼ 0:2 (dashed

lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-dotted lines), and g0 ¼ 10�3; g1 ¼ 0:2
(dotted lines), all with dx ¼ 0:2; dz ¼ 0:2 and By0 ¼ 1. Green lines show the

changes of internal energy, consisting of compressional (blue lines) and Ohmic

contributions (red).

FIG. 5. Energy changes as function of the guide field By0 for four runs with

resistivity models given by Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines),

g0 ¼ 0; g1 ¼ 0:2 (dashed lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-dotted lines),

and g0 ¼ 10�3; g1 ¼ 0:2 (dotted lines), all with dx ¼ 0:2; dz ¼ 0:2 and

b ¼ 0:2. Green lines show the changes of internal energy, consisting of com-

pressional (blue lines) and Ohmic contributions (red).

FIG. 6. Energy changes as function of the guide field By0 for two, initially

force-free, runs with resistivity models given by Eq. (8), with g0 ¼ 0; g1 ¼
0:02 (solid lines) and g0 ¼ 0; g1 ¼ 0:2 (dashed lines), both with dx ¼
0:2; dz ¼ 0:2 and b ¼ 0:2. Green lines show the changes of internal energy,

consisting of compressional (blue lines) and Ohmic contributions (red).

FIG. 3. Evolution of energy changes for the four runs with resistivity models

given by Eq. (8), with g0 ¼ 0; g1 ¼ 0:02 (solid lines), g0 ¼ 0; g1 ¼ 0:2
(dashed lines), g0 ¼ 10�4; g1 ¼ 0:2 (dashed-dotted lines), and g0 ¼ 10�3;
g1 ¼ 0:2 (dotted lines), all with dx ¼ 0:2; dz ¼ 0:2 and By0 ¼ 1; b ¼ 0:2.

Green lines show the change of internal energy, consisting of compressional

(blue lines) and Ohmic contributions (red).
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reduces the amount of energy released and converted to heat.

For g0 ¼ 0, compressional heating remains dominant up to

By0 � 3. The threshold again becomes reduced when uniform

resistivity is added to b � 2 for g0 ¼ 10�4 and b � 0:5 for

g ¼ 10�3.

So far, we have considered only cases with uniform guide

field. For some applications, however, such as coronal heating

by reconnection, the fields undergoing reconnection may be

considered as (nearly) force-free, that is, j� B � 0, consist-

ent with low b even within the current sheet. In that case, a

one-dimensional equilibrium is given by Eqs. (4) and (5) with

pf ¼ 1, satisfying jBj ¼ const. Fig. 6 shows the energy

changes for two initially force-free cases with g0 ¼ 0; g1 ¼
0:02 (solid lines), g0 ¼ 0; g1 ¼ 0:2 (dashed lines) and both

with dx ¼ 0:2; dz ¼ 0:2 and b ¼ 0:2. Qualitatively, we find

the same results as for uniform guide field with decreasing

energy release for increasing By0. However, the compres-

sional contribution falls off more rapidly with increasing By0,

such that Ohmic heating becomes dominant already for

By0 > 0:7, corresponding to a guide field in the center of the

current sheet of �1:2.

VI. INTEGRAL CONSTRAINTS

The limitation of flux and energy transfer stems from the

fact that the evolution leads to final states that are governed by

the approximate conservation of the integral quantities M(A),

S(A), Y(A), given by Eqs. (1)–(3), where A represents the flux

variable (y component of the vector potential), which identifies

magnetic field lines. The differences between the late stages

are demonstrated by Figure 7 for three runs with g0 ¼ 0; g1 ¼
0:2; dx ¼ 0:2; dz ¼ 0:2; b ¼ 0:2 and (a) By0 ¼ 0, (b) By0

¼ 1, (c) By0 ¼ 5. It is obvious that more flux is reconnected

for larger compressibility (smaller By0). The larger compres-

sion is also obvious from the increase in the maximum pres-

sure, which was initially 0.6.

FIG. 7. Late stages of pressure P (left)

and current density Jy (right) for three

runs with g0 ¼ 0; g1 ¼ 0:2; dx ¼ 0:2;
dz ¼ 0:2; b ¼ 0:2 and (a) By0 ¼ 0, (b)

By0 ¼ 1, (c) By0 ¼ 5.
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The approximate conservation of mass, entropy, and

footpoint displacement as functions of the flux variable A,

defined by Eqs. (1)–(3), is demonstrated by Fig. 8 for two

cases with By0 ¼ 0 (blue dashed-dotted lines) and By0 ¼ 5

(red solid lines). Black dashed lines show the initial distribu-

tions. All runs were based on g0 ¼ 0; g1 ¼ 0:2; dx ¼ 0:2;
dz ¼ 0:2. We note that the little peaks indicate the flux value

at the x-line, A ¼ A0. This peak results from the fact that the

flux tube volume diverges on field lines connecting to a regu-

lar magnetic null (in x, z coordinates). Flux values A < A0

correspond to reconnected field lines inside the magnetic

islands. The shift of this peak to higher A values for the

By0 ¼ 0 (blue) curves is a further indication that reconnec-

tion stops at lower flux values for larger guide field, i.e.,

larger incompressibility.

Due to the strong localization of resistivity, the inte-

grated entropy (Fig. 8(b)) does not show any significant

enhancement. This changes when uniform resistivity is

added. Fig. 9 shows the entropy per mass S(A)/M(A) for the

two cases with (a) g0 ¼ 10�4 and (b) g0 ¼ 10�3 presented in

Figs. 2–5 (both with g1 ¼ 0:2; dx ¼ 0:2; dz ¼ 0:2; b ¼ 0:2
and By0 ¼ 1). For g0 ¼ 10�4, the entropy enhancement is

still small but for g0 ¼ 10�3, it is considerable, continuously

increasing even after reconnection.

VII. EFFECTS OF THE SYSTEM SIZE

An important factor in evaluating the efficiency of mul-

tiple reconnection events in the plasma heating is how

closely packed the reconnection sites are. Here, we do not

consider that closely packed sites may also enhance the effi-

ciency when the outflow from one site drives the inflow into

another site but still consider the sites as independent but

limited by their size. In this part of our study, we keep the

2D approximation with the length along the current sheet

fixed but vary the extent perpendicular to the current sheet.

Fig. 10 shows the amount of energy converted to internal

energy as function of the system size Lz, (top) for the total

amount, (bottom) in relation to the magnetic energy content

Wmx associated with the reconnecting magnetic field compo-

nent Bx. Figure 10 demonstrates that the total energy release

and conversion saturates at a system width of approximately

zm ¼ 10� 20. However, the relative energy gain maximizes

at zm ¼ 4� 6 in the absence of a guide field, while for large

guide field the smallest size results in the largest relative

energy gain. However, at �0:8%, this is significantly lower

than the energy gain in antiparallel reconnection, which

maximizes at �15%.

FIG. 8. (a) Mass M(A), (b) entropy function S(A), and (c) footpoint displace-

ment Y(A) as functions of the flux variable A, for two runs with g0 ¼ 0; g1 ¼
0:2; dx ¼ 0:2; dz ¼ 0:2; b ¼ 0:2 and By0 ¼ 0 (blue dashed-dotted lines),

By0 ¼ 5 (red solid lines). Black dashed lines show the initial distributions.

FIG. 9. Entropy per mass S(A)/M(A) for two runs with (a) g0 ¼ 10�4 and (b)

g0 ¼ 10�3, both with g1 ¼ 0:2; dx ¼ 0:2; dz ¼ 0:2; b ¼ 0:2 and By0 ¼ 1.

Black dashed lines show the initial distributions.
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VIII. SUMMARY AND CONCLUSIONS

Using resistive MHD simulations, we have investigated

energy release and transfer by reconnection in finite (closed

or periodic) systems. The emphasis was on the total amount

of energy released and transferred to plasma heating in con-

figurations that range from highly compressible to nearly

incompressible, based on the magnitude of the background b
(ratio of plasma pressure over magnetic pressure) and of a

guide field in two-dimensional reconnection.

As expected, the system becomes more incompressible,

and the role of compressional heating diminishes, with

increasing b and increasing guide field. Nevertheless, com-

pressional heating may dominate over Joule heating for val-

ues of the guide field of 2 or 3 and b of 5–10 (based on the

magnitude and the pressure of the reconnecting magnetic

field component). This result stems from the strong localiza-

tion of the dissipation near the reconnection site, which is

modeled based on particle simulation results. Imposing uni-

form resistivity, corresponding to Lundquist (or magnetic

Reynolds) numbers Rm of 103 to 104 (or �104 � 105 if based

on the length of the current sheet rather than its half-thick-

ness), leads to significantly larger Ohmic heating. This heat-

ing, however, does not stem from reconnection but from the

continued dissipation of current that collects within magnetic

islands or flux ropes after reconnection.

Consistent with earlier findings, obtained for varying c,11

we find that the amount of energy released by reconnection

and converted to heat greatly diminishes with increasing

incompressibility. For a guide field strength of 5, only �0:3%

of the magnetic energy of the reconnecting magnetic field gets

converted to heat with similar results for large b. The limita-

tion of the energy released (and similarly of the magnetic flux

reconnected) stems from the constraints imposed on the final

states by the approximate conservation of mass M(A), entropy
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FIG. 10. Internal energy gain as function of time for various system sizes and two values of the guide field, (left) By0 ¼ 0, (right) By0 ¼ 5.
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S(A), and foot point displacement Y(A), which is related to the

integrated helicity, not just for the entire box but for each flux

tube. This approximate conservation is closely related to the

strong localization of dissipation. The results demonstrate the

importance of taking account compressibility and localization

of dissipation in investigations of energy release and transfer

by turbulent reconnection, possibly relevant for solar wind or

coronal heating.
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